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Abstract

This is one in a scries of reports describing the application of temporal (ogic to the specilication
and verification of computer programs. -:

.A)i 4arlier reports, w 'introduced f.ecmporaf logic as a too[ for reasoning about concurrent
prograris and specifying their properties !MPJI and pr~sented proof principles for establishing

thee popetie (IP21~'~Here, we restrict ourselves to deterministic, .9cqjentiaI programs. We
arset proof systemn in which properties of such programs, expressed as temporal formulas, can

be proved formally.

Our--proof system consists of three parts: a general part elaborating the properties of temporal
logic, a domain part giving an axiornatic description of the data domain, and] a program part giving
amn axiomatic description or the program under cc- .;ideration.

<+A'tcJ -b
We illamsrateie use of the proof syslem by giving two alternative formal proofs of the total

correctness of a 8i~hple program.

This paper appears in the Theoretical Foundations of Programming Methodology (W. L Bauer, 14'.
W. lDijkstra, and] C. A. It. Il1(arc, eds.), NATO Scientific Series, D). Rteidel P~ub. Co., Holland, 1981.
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1. INTRODUCTION 9

Temporal logic is a modal logic in which we impose special restrictions on the models of
interpretation (Pll1, IIZUI,II'N(IJ,[GPSS], [MPI)D. A universe for temporal logic consists of a

* collection of states (worlds). A state a' is accessible from a state s ir through development in time,
*s can change into s'. We concentrate on histories of development which are linear and discrete.

Thus, the models of temporal logic consist of u-sequences, i.e., infinite sequences of the form a --

So So, .. In such a sequence, sj is accessible from si if i < j. On these states we define an
immediate accessibility relation p which is required to be a function. That means that every state s
has exactly one other state s' such that p(s, s'). This corresponds to our intuition that in a discrete

- time model each instant has exactly one imnmediate successor. the transitive reflexive closure of p,
I? = p*, is the accessibility relation; intuitively, R(s, s ') holds when s' is either identical to 8 or
lies in the future of s.

We first describe the temporal language we are going to use. This language is designed specially
*" for the application we have in mind, namely reasoning about programs, and is not necessarily the

most general temporal language possible.

The language uses a set or basic symbols consisting of individual variables and constants, and
*proposition, function and predicate symbols. The set is partitioned into two subsets: global and

local symbols. The global symbols have a uniform interpretation over the complete universe and
do not change their values or meanings from one state to another. The local symbols, on the
other hand, may assume different meanings and values in different states of the universe. For our
purpose, the only local symbols that interest us are local individual variables. We will have global
symbols of all types.

We use the regular set of boolean connectives: A, V, D, -, and - together with the equality
operator = and the first-order quantifiers V and 3. This set is referred to as the classical operators.
The quantifiers V and 3 are applied only to global individual variables.

The modal operators used are: 0, 0, 0, and U, which are called respectively the always,
sometime, next and until operators. The first three operators are unary while the U operator is
binary. We use the next operator 0 in two different ways -- as a temporal operator applied to

formulas and as a temporal operator applied to terms.

A model (I, a, a) for our language consists of a (global) interpretation f, a (global) assignment
ct and a sequence of states a.

" The interpretation I specifies a nonempty domain D and assigns concrM-' elements,
functions and predicates to the (global) individual constants, function . ,'icate
sy mbols.

" The assignment a assigns a value over the appropriate domain to each of the global free
inlividual variables.

e The sequence a = so, st, • is an infinite sequence of states. Each state si assigns values
to the local free individual variables and propositions.

For a sequence

0" = -0 , pIt .. .



we denote by

thc i-truncated sufix of a.

Given a temporal formula wo, we present below an inductive definition or the truth value or ws
in a model (1, a,oa). The value of a subforrnula or term T uinder (1, a, a) is denoted by rIa, I being

* implicitly assumned.

Consider first the evaluation of terms:

. For a local individual variable or local proposition V:

!Ij"r = Y..'

i.e., the value assigned to yi in so, the first state of or.

*For a global individual variable or global proposition us:

i.e., the value assigned to us by a.

e For an individual constant the evaluation is given by T:

cI" = lIdc.

* For a k-ary function f:

i.e., the value is given by the application of the interpreted function If11 to the values
of ti, . .. ,tk, evaluated in the environment (I, a, or).

0 For a term t

i.e., the value of 0 t in or so, a,,. is given by the value of t the shifted sequence
orm 8 1 82,Ac~eelonFor hNTIS GIVI&I

IC TkV 0l
Consider now the evaluation of formulas: Uii 0Y o d 0

COP I
For a k-ary predicate p (including equality): INS Pcr -

=~i I IAfpJ1 (t~~ I I off , tk,4a)- Lpi!tribuft in/

3 Availa! tlity Codes--
:Avail and/or

Dit !pocln1



Here again, we evaluate the arguments in the environment and then test I[pJ on them.

* For a disjunction:

'i (WI v 2)1 = true iff wI1 = true or W21 = true.

* For a negation:

(-w)I= true iff wl =false.

9 For a next-time application:

Thus Ow means: w will be true in the next instant -- read "next up".

* For an all-times application:

OwI = true iff for every k > 0, wl(A,) = true,

i.e., w is true for all suffx sequences of D. Thus Ow means: w is true for all future
instants (includiug the present) -- read "always w" or "henceforth w".

* For a sonic-time application:

Owl[r = true iff there exists a k > 0 such that wI(k) = true,

i.e., w is true on at least one suffix of a. Thus w means: w will be true for some
future instant (possibly the present) - read "sometimes w" or "eventually w".

* For an until application:

a
WUW 2 1o = true iff for some k >- 0, w12I1() true and

for all i, 0 < i < k, w 1(i) I true.

Thus Wt Lw2 means: there is a future instant in which W 2 holds, and such that until
i*.  that instant w, ... U;,a ;o!Jz ;'"w unt il

* For a universal quantification:

(Vu.W)I = true iff for every d E D, w 1 = true,

where t' a o [u +- d] is the assignment obtained from a by assigning d to u.

* For an existential quantification:

(3u.w)1 = true iff for some d E D, wI at true,

where a' - a o [u -- d].
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I.o

A formula w is valid if it is true in every model (I, a,o).

Having defined valid formulas, we naturally look for a deductive system. In such a system
we take some of the valid formulas as basic axioms and provide a set of sound inference rules by
which we hope to be able to prove the other valid formulas as theorems. In order to denote the
fact that a formula w is a theorem derivable in our deductive system we will write I- w. This will
be the case if w is an axiom or is derivable from the axioms by a proof using the inference rules of
the system.

We partition our deductive system into a general part dealing with the general temporal
properties of discrete linear sequences, a domain part which gives an axiomatic description of the
necessary knowledge about the domain, and a program part which gives an axiomatic description
of a particular program.

We start with the general part, describing first the axiomatic system for propositional temporal
logic in which we do not admit predicates or quantification. We treat first the "classical" modal
operators 0 and 0 (the modal system), and later add the special operators 0 and U (the temporal
syIstem).

2. TIlE 0 ("ALWAYS") AND 0 ("SOMETIME") OPERATORS

Axioms-

Al. - -O' w O--w

A2. - -(w Dw2) - (0wt,:3w 2)

A3. I Ow itw

A4. [3- 'w:,O tw

Axiom At defines 0 as the dual of 0; it states that at all times w is false iff it is not the case
that sometime w holds. Axiom A2 states that if universally w, implies w 2 then if at all times w,
is true then so is 10 2 . Axiom A3 establishes the present as part of the future by stating that if w
is true at all future times it must be true of the present. Axiom A4 states that if w holds in the
future, it holds in the future of the future.

5



Inference rules:

R1. If to is an instance of a propositional tautology then I- u;
(Propositional Tautology - PT)

R2. If - w W2 and I- w, then I- W2o
(Modus Ponens - MP)

R3. If - to then I- 0w
(0 Insertion - 0 1)

All these rules are sound. The soundness of RI and R2 is obvious. Note that in R1 we also include
modal instances of tautologies; we may substitute an arbitrary modal formula for a proposition
letter in obtaining an instance. For example 0 W 0 Ow is a modal instance of the tautology p D p.

*.. To justify R3, we recall that validity of to means that w is true in all models, hence Ow is also
valid.

This system provides a logical basis for "propositional" modal reasoning. In Modal Logic
circles, this system is known as S4 (see, e.g., [HC]). This system constrains R to be reflexive (A3)and transitive (A4).

Before demonstrating some theorems that can be proved in this system, we develop several
useful derived rules:

Propositional Reasoning -- PR

I- (toi A to2 A ... A w,,) D w
F- Wo, F- Wo2, ... , and F- w,

I-

The notation above is used to describe inference rules. It has the general form

I- o , F- V2 .... F- (Pn

and means that if we have already prnvod 'Pl, • .. ')p (the aR.4imptionq of the rule), we are allowed
by this rule to infer b (the conclusion of the rule).

proof:

The rule follows from the propositional tautology (Rule RI)

I- [(to A to2 A ... A w,,) tol D JW1 D (to2 D (... (t D to)... ))

by applying MP (Rule R2) n + I times. U

Whenever we apply this derived rule without indicating the antecedent

I- (toA w2 ... A ton) w,

6



it means that this formula is simply an instance of a propositional tautology.

0 [] Rules

F- wl DW2 l Wo - t2
(a) (b)

F •Owl D OW2 13W to W --- t2

proof of (a):

1. I wI to 2  given
2. I- -(wi D w2) by []I
3. - O(w D W2 ) D (OWl D w 2) byA2
4. - Owl D Ow2 by 2, 3, and MP

Rule (b) then follows by propositional reasoning, since

D A0

is a tautology. I

> 0 Rules

-tol DW 2  I- W W2

(a) (b)
i OWl D OW2 F Owl OW

proof of (a):

. -Wl Z) W2  given
2. I- :-)2 f -WI by PR
3. I- O-tW D -wj by 00
4. F -Ow 2 D -to by Al and PR
5. - Owl D OW2  by PR

Rule (b) then follows by propositional reasoning. I

Equivalence Rule - ER

Let w' be the result of replacing an occurrence of a subformula v,
in wo by v2 . Then

F. V V 2

proof.

By induction on the structure of wo.

7
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Case: w is vt. Then w' is v2 and I- v, v 2 implies I- w w'

Case: w is of the form -u. We assume that I- v =_ v2 implies - u -- ' . Then by
propositional reasoning F -u = - ', i.e., I- w =- w'.

Case: w is of the form u1 V u2. We assume that if - v1 -- V2 , then F ul ul andSI ,yul

- U2 -U2. Then by propositional reasoning - (ul V u2) -(u V u2), i.e., - w - '.

The cases where w is of form ui A U2 , ut D U2 , etc. are similar.

Case: w is or the form Ou. We assume that if I- vi =_ -v2 ,then F uu -'u . By the 0E [O-rule,
F- Ou=- Ou', i.e., F w=-w'.

The case in which w is of the form 0 u is treated similarly, using the 0 *-rule. I

Some theorems that can be derived in the system are:

• ' Ti. -w Ow

proof:

1. I- (r. uw) D --w by A3

2. - w D (-,l,,w) by PR
3. I- w D0 w by Al and PR

The theorem implies (by MP)

' Insertion - O 1

F w

F- OW

We can derive the converse of axiom A4 as stated in the modal system, and thus prove:

T2. 1- 0'w 0= '0 w

proof:

1. - Ow D l0w by A4
2. I- Ow : to by A3
3. - 0lw D Ow by 00
4. - Ow _ 00w by 1, 3, and PR

T3. - Ow 0 w

proof:

1. I- 0-w 0 0 -w by T2

8



2. F -0--w -0n -,w byPR
3. F Ow -0'--,<to byAl and ER
4. I- * w -'t byAl and PR

Because of these last two tleorems we can collapse any string of consecutive identical modalities
such as 0 ... 0 or 0 ... ' into a single modality of the same type.

Note that to derive line 3 from line 2 we could not use propositional reasoning (PR), but we
had to use the equivalence rule (ER). The subformula 0 - w in

2. F ... - -

was replaced by the equivalent subformula - Ow to obtain

3. F- ... .

But this replacement is inside 0 and thus cannot be justified by propositional reasoning. The re-
placement done on the left-hand side of the equivalence can be justified by propositional reasoning.

T4. F (0, -w) (-ow)

proof.

1. F (-,-w) _ w by PT

2. F (0 --.-- w) - w by 00
* 3. F (- . w) Ow by Al and PR

4. (0-w) (,-.w) by PR

T5. I- O(WI 2 ) D (* wt I D w 2 )

* - proof.

1. F (to D w 2) (- w 2 ) -W) by PT
2. F O(wj D tW2) = 0(-w 2 D -WtO) by 0 0]
3. F 0(-w 2 D -wl.,) (0 -. w 2 ) 0 -to) by A2
4. F (O-w 2 D O-W) (-'o 2  D ) by A1 and PR

5'.F (-, w 2 :- w 2 ) (0to oW2) by PT
6. D O(w1 D (,) : i t?.2) hy 2, 3, 4, 5, and PR?

T6. F 1(w IA W2 ) (= Oi A 0tW2)

proof.

1. F- (Wi A w 2) D to by PT
2. F 0(w Aw 2 ) D OWI by 00
3. F (toiA W2) D to2  byPT
4. F D(wi Aw 2) D OW2  by o
5. F rl(wi A w 2 ) D (0own AOW2) by 2, 4, and PR

6. F w1 D (w2 JtoAto ) byPT

9



7. - 0w 1 D O(w2  (wtAw 2)) byQO
8. I- O(w2 D (wi Aw 2)) D (0w 2 D O(wAw 2 )) by A2
9. F 0 wi D (0'w 2 D O(wiAw2 )) by 7, 8, and PR
10. I- (0wtAnw2 ) D O(wiAw 2 ) by PR

11. I- O(wt Aw2) = (Owl AOw2) by 5, 10, and PR

T7. - *(wlVw 2 ) - WiV 0 { .w 2)

proof.

1. I- O(-wt A -W} 2 ) (O-wi A O--.,- 2 ) by T6
2. F 0O-(WlVW2) - WIV-- W2) by ER
3. I- -<(wI V w 2 ) -wI V < w 2) by Al and PR
4. I- O(wIVW2) - (0wtV w 2) byPR

Note that because of the universal character of 0 it can be distributed over A (Theorem T6), while
0 ,, which is of existential character can be distributed over V (T[heorem T7).

T8. F O(w1 Aw 2 ) D (0wi Aw 2)

proo't

1. F O(wrAw2) D Wl by PTand 0 0
t 2. F 0(wtAw 2) D 0 w 2  byPTand 0 0

3. F (wi Aw2) D (0>wtA*w 2) by 1,2, and PR

T9. F (DWlVO 1 W2) D O(WlVw 2 )

proof.

1. - Owl i O(un V w 2) by PT and 00
2. F '-w 2 D O(wIVw 2 ) by PT and 00
3. F (OwIV w2) D O(wIVw 2 ) by 1, 2, and PR

STI0. F (nwiAC0w2) D O(wiAW2)

proof.

1. F D(w, D -- w 2) D (Ow l D 0-1w 2) by A2
2. F 0-.(wi Aw2) D -( Owi A - .0-W2) by ER
3. F '- <(waiAW2 ) D -(OwtA OW 2) by Al and PR
4. F (0wi A 0w2) D O(wiAw 2 ) byPR

* another proof (without using ER):

I. F w1 I (w2 D(I, A w 2 )) by PT
2. F nw, D (w 2 D (7v, A 1 2 )) by FtJ

10



r3. F- O(W2 D(wi AU 2 )) D (*W 2 :D (wi AW 2 )) by T5
4. I- Owlj D (0W 2 D)(wiAu 2)) by 2, 3, and PR
5. F- (0 wiA 0W2 ) :) O~(w A w2) by PR

The following derived rules correspond to proof rules existing in most axiomatic verification
systems:

Consequence Rules - '$ Q and 0 Q

F I D ~W2  1WjI D 2
F FW2 D OW3 IW 2 D W3

F W3 D W4  -W 3 D W4

Proof Of 'Z'Q:

L 1 Wi D W2  gi ven
2. l~W2 0 W13 given
3. I-w 3  w u 4  given
4. F- OZW 3 D i by 3 and 0' 0
5. F- W D 'W4  by 1, 2, 4, and PR

The 0OQ rule is proved similarly by the 0 0- rule.

Concatenation Rule -- 0Z C and 0 C

I D O'W2  F WI D Ou 2

F IwDJO 3  F--WjI OW3

Proof Of 0C

1. - F W1 D OW2  given
2. W2 tv W3 given
3. F- OW2 D **W 3  by 2 and 0
4. F e0UW2 D J W by T3 an 'd PR
5. I- W1 D OW3  by 1, 4, and PR

The 0 C rule is proved similarly by the 0 0-rule.



I
3. TIlE 0 ("NEXT") AND U ("UNTIL") OPERATORS

Axioms:

CI. I- - w - w

G2. F D(- D W 2) D (OW ,D OW2 )

C3. - Ow D w

C4. I- 0-w -Ow

C5. F O(wI D W 2) D (OwDOW2 )

C6. I- Ow D Ow

C7. I- Ow D 00w

C8. I- O(w D Ow) D (w DO w)

C9. - W UW 2  [W2 v (w A O(wi U W 2))]

CI0. - w1 Uw 2 00 w 2.

Axioms Cl - C3 are the same as At - A3 in the modal system.

Axiom C4 establishes 0 as self-duai. Consequ-ntly it impiies that the nexL instant exists and
is unique, and restricts our models to linear sequences (no branching).

Axiom C5 is the analogue of C2 for the 0 operator. Axiom C6 states that the next instant
is one of the reachable states, i.e., it is also part of the future. Axiom C7 is a weaker version of
A4, I- Ow D 00 0w, and can be used together with C8 to prove A4 as a theorem in this system.
Axiom C8 is the "computational induction" axiom; it states that if a property is inherited over
one step transitions, it is invariant over any suffx sequence whose first state satisfies w. Axiom C9
defines the until operator by distribut'iig its effect into what is implied for the present and what
is implied for the next instant. Axiom CIO simply states that "uto until U12 " implies that w2 will
eventually happen.

12



Inference rules:

RI. If to is an instance of a propositional tautology then I- to
(Propositional Tautology - PT)

R2. If I- to =)w2  and I- tut then I- to2

(Modus Ponens - MP)

R3. If I-to then F-Ow

(E3 Insertion - 0 1)

These rules are identical to RI - R3 or the modal system. Since axioms C1, C2 and C3 are
identical to axioms Al, A2 and A3 and we will show later that axiom A4 is derivable in this system,
it follows that all the derived rules or inference and the theorems in the modal system are also

" - derivable in this system. Here are several additional derived rules:

0 Insertion - 0 1:

proof.

1. I-t given
2. I- Ow by 01
3. I- Ow by C6 and MP

0 0 Rules

F WIjDto2 I- wl Wto 2
(a) (b)

I- Owl D OW2 I- Owl -- Ow

proof of (a):

I. I- wl to given
2. I- O(wl D to2) by 01
3. I- Owl =) OOw by C5 and MP

Rule (b) follows by propositional reasoning.

Computational Induction Rule - CI

F w Oto

I- to D Ow

13



It Proof.

1. w u Ow given
2. - O(w Ow) by 01
3. F O(w Ow) (wDO w) by C8
4. F w D OW by 2, 3, and MP

Backward Induction Rule - BI

I-Owitu
F ow:w

proof:

1. I- Ow D w given
2. - -w D ,-Ow by PR
3. F-w D O-w by C4 and PR
4. V -w D 0--w by CI
5. -w D-O<w by C1 and PR
6. - Ow D w byPR

0 Consequence Rule 0 Q

F W1 D W2
- w2 D O w 3

F W3 D W4

-t Ow4

proof:

1. F- w 1 D w given
2. F W2 D Ow 3  given
3. I- w3 D W4 given
4. F Ow 3 D Ow 4  by OO
5. F W1 D OW4 by 1,2,4, and PR

Note that we do not have a 0 concatenation rule.

A simple theorem of this system is:

TII. I- Ow D *w

proof.

I. F (O]-w) D (0 -w) by C6
2. F (.---. 0 .w) D (,--=-w) by PR

14



3. - 0 u :30w by CI, C4, and PR

T12. - Ow D 00w

proof.

1. I- Ow D 00lw by C7
2. - E' 3 0 w by CI

This is the "missing" axiom A4. We have all axioms and rules of the previous system, therefore
we can deduce all theorems and derived rules of the modal system.

The following special rule is very useful in proving until theorems:

Nezt to Present Rule - NP

- (OW - OW2 ) :) (W1  -W 2 )
F- w ( (wi A W2)

IW 1U:30r(wt A W,2)

I- t I  2

proof.

1. - Wo O(Wl A W2) given
2. - W2 D C(W iAw 2 ) given
3. - (WI VuW2 ) D O( t Au2) by 1,2, and PR

4. f- (wiAw 2 ) D (e w 2 ) by PT
5. F- O(wiAW 2 ) D O(wl =W2) by O0

8. - O(wI W 2) D (WI Wao2) given
7. F- O(W1 W2 )iD(WoI W2) by BI

8.- F (W I VW2) D (,1 = W 2) by 3, 5, 7, and PR
9. I- t ,1 ua by PR

We extend now the Equivalence Rule (ER) to handle the 0 and U operators.

Equivalence Rule - ER

Let w' be the result of replacing an occurrence of a subformula vt
in w by v2. Then

15

f i IIt.II, - .. . . . .: . .... e M . . . .,I . . .. , . . . .



7I

I proof.

As before, the proof is by induction on the structure of w. The cases where w is w or of form
-- U, U1 V u2, U1 0 u2, etc. are treated as in the ER derived rule above.

Case: w is of form 0 u. We assume that if F v1 =v 2 , then F u u'. Then by the 0 0-rule
Ou Ou', i.e. F w i wn.

4 The cases where w is of form lu and 0 u are proved similarly by the 0 0-rule and 0 *-rule,
respectively. The case that w is of form u 1 U U 2 needs a more detailed proof.

Case: w is of form ul U u 2 . We assume that if -v 1 = v 2 , then I--u u' and F u 2  tU.
We attempt to use the Next to Present derived rule (NP) taking w, to be ul U u2 and W 2 to be

I. F u- u, induction hypothesis

2. F u 2  u2 induction hypothesis

3. FU 1 U U2  112 V(u i A 0(uU UU2 )1) by C9
4. F u', u' - u' v (u' A 0(u' U ut))] by C9

5. F ' u ' _ [U V (ui A o(U' U u ))! by 1, 2, 4, and PR

6. [o(UI U U2) 0(U u'2)] D [(U, U U2) ---( U u2)
by 3, 5, and PR

7. 1 u 1 Uu 2 : 0 u 2  by CIO
8. F U 2 ) (u, Uu 2 ) A (ul U u2)]  by 3, 5, and PR

9. F u, Uu 2 D 01(ut Uu 2 ) A (u' U u)] by 7,8, and 0>Q

10. F u' U u' D <>u 2  by CIO
11. F 0u 2  Oul by 2 and 0 0
12. F uiUu 0 u 2  by 10, 11, and PR

13. F u' Uu' -0[(ul Uu 2) A (u Uu')] by 8, 12, and 0 Q

14. F (utu2) (u' uU2) by 6,9, 13, and NP

This concludes the proof. 3

"next" theorems

T13. F O(I AV)2 ) -- (OAOw 2 )

proof.

*.I- O(w, D -W 2) D (Ow, D 0-W2) by(C5

2. F -(OW I D 0-W 2) D -O(WI D -W 2 ) by PR
3. F -- W(Ow0 1 -OW 2 ) D 0-(W ) I w2 ) by C4 and PR
4. F (0 v,, A 0 W2 ) D 0(w,, A W2 ) by ER

5. F (wiA 702 ) W In by PT
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6. I- O(wl AW2) OW by 00

7. I- (wtAtW2) D W2 by T

8. - O(w A W2) D 0W2 by a

9. F O(wi A w2) : (0 wi A 0 W2) by 1, 8, and PR

10. O(wl A W2) = (Owi A 0OW2) by 4, 9, and PR

TI4. F O(WtlVw2) (OwtVOw2)

proof.

1. - 0(-wi A .-W2) (0 -. w) A (0 -W, 2) by n
2. - W 2) (-Owl)A(-OW2) by C4 and PR

I F- WIO-VW2) (-Ow d)A(--Ow) by EC and PR

4. F - O(wI VW2) - 0 W,- V-0 W2) by C4 and PR

5. - O(wIVW2) - (OwIVOw2) b P

TI5. F O(wl W2) (Ow 1  OW2)

proof:

I. I-O IVw2) (O-WI)v(Ow2) by T14
2. F 0(-wt Vw2) (,0 -W) V (0OW2) by C4 and IP1

2. I- O(w I DW2) -- (w Ow0W2) by ERand 'R

T16. F O(Wi -w 2 ) = (Owi= Ow 2)

proof.

1. i- [O(waw 2)AO(w2 wdI -- [(OW 1,Ow 2)A(OW2JO ,,)I
by T15 and N?

=~~~. F- O[(w, :3 w2)^(W,2 D WI)! = [(OW,, D O ,,2)A^(O W,2 D odl
by T13 and PR

3. I- O(ti W2) (Owi tO4) by ER and IR

T17. - O0w - 00w

proof:

1. F Ow D (wDOw) by IT

2. I- 0w D O(w:DO ) by 00

3. I- 0(wD0w) O (w D Ow) by C7

4. F 0r3(wD Ow) D O(wD13 w) byC8and 00

5. F O(w D13w) D (Ow D 013w) by C5

6. F 0oOw :) (Ow D ow) by 2, 3, 4, 5, and I'R

7. - 00w D Ow by C3

8. F 0Ow n 0w by 6,7, and PIT
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9. I- 0Ow 3 00O w by C7 and 00
10. I- 003w 0Onw by CI

it. F 0Ow 30w by C3 and 00
12. F 000w D 00w by 00
13. I- 003w 0 10w by 10, 12, and PR

14. F 00w 00w by 8, 13, and PR

T18. I- 00w=00w

proof:

1. F 00-w 0 - w by T17
2. F -00w -- 'Ow by Cl, C4, and ER
3. F O w - 00w by PR

T19. F Ow = (wAOnw)

proof:

* 1. Ow D w by C3
2. F Ow D 00w by C7
3. F Ow D (wAOFw) by 1, 2, and PR

* 4. F 00w D 0(wAOr3w) by 00
5. F (wAO[w) D O(wAO0w) by PR
6. F (wAO[w) D D(wAOOw) by Cl
7. F 0(wAODw) D (OwADO w) by T6
8. F D(wAO1w) D 0Ow by PR
9. F (wAODw) D Ow by 6, 8, and PR

10. F Ow - (wAO0w) by 3, 9, and PR

T20. F Ow - (w V 00w)

proof:

1. F 0--w (--(w A 0--w) by T19
2. F -Ow -(w V "-'00- W) by GI and I'll
3. F - Ow '-(w V 00w) by C4, C1, and ER
4. F 0 w ------(w V 00w) by PR

T21. F (w A 0-w) D 0(w A 0-w).

This is the dual of the "computational induction" axiom C8. It states that if w is true now
and is raise in the future, then there exists sone instant such that w is true at that instant and
false at the next.

proof:

1. F 0(w3 Ow) 3(wJ D w) by C8

18



2. I- -- (W Ow) D -0(wD OW) byPR

3. I- (w A - 0 w) D o(, A - 0o w) by T4 and ER

4. - (w A -Wo ) D O(w A 0-W) by T4, C4, and ER

"until" theorems

T22. 1-- (OtoI)U(Otu 2) 0(WIUW2)

Denoting

W 2  O(wtIUW2 )

we have to show I- wt w2 .We will use the Next to Present derived rule (NP).

proof:

1. - W, - Ow 2 V (Ow 1 A Ow*) by C9

2. F o(WIUW2) O(o2 V (w A o(WIU 2))) by C9 and 00

3. 1- W* OW2 V(Owt A Ow*) by 2, T13, T14, and I'R

4. Fo (Ow=0w) D (w*- *) by 1, 3 and PR

5. 1- Ow2 D (w4Atw) by 1, 3 and PR

6. l'- 0OO 2 D O(wiAw2*) by 00

7. - (OwJUOw 2 ) D 0OW 2  by CtO

8. 1- t D 0(wIAo 2*) by 6, 7 and PR

9. I- UwUw2 D 0w 2  by C1O

10. I- 0(nIUw2 ) " <")W2  hy 9, 00, and T718
* ** 2

It. F- W 2  0 (uIAW2 ) by 6, 10, and PR

12. - w i - w2  by 4, 8, 11 and NP

T23. F" (Ol A W 2)U t3 = (j(w'tw 2) A (W2 W3)1

Denoting
$

w: (t A ,2)U 3

Wo2 : (WIUw3) A ( 2Ut"3)

- "' .. . - -- ---: -- _19



we have to show F- w I  w 2 . We will again use the derived rule NP.

proof:

I-1 F w1 W 3 V(OwlA W2 ) A Ow*) by C9
2. F- wIUW3  W3 V (w, A O(WIUW3 )) by C9

3. F- w2 Uw 3  w3 V (Wu2 AO(w2 UW3 )) by C9

4. F (WIUWa) A (W2 ULW) W3 v ((l AW2 ) A O(WUW3) A O( 2UW3 ))
by 2, 3, and PR

5. - W2  W3 V ((W AW 2) A OW2) by 4, T13, and PR

6. F- (Ow - Ow 2 ) D (w I  w 2 ) by 1, 5, and PR

7. F- W3 D (w1Aw2) by 1,5, and PR

8. F CW 3 D C(wo* ) A by 00

9. F- (wiAW2 )UW3 D OW3 by CIO

10. F- w I D ^(W I A W 2 ) by 7, 9, and PR

11. I- WW 3 D Ow3 by CIO

12. F- (witw3 ) A (W 2 IW3 ) D OW 3  by PR
13. w* O(w * Aw) by 8, 12, and PR

14. F- w - w2 by 6, 10, 13, and NP

4. QUANTIFIERS

Since we intend to use terms and predicates in our reasoning we have to extend our system to
admit individual variables, terms and quantification. Let us consider additional axioms involving
quantifiers and their interaction with modalities.

Axioms:

11. F- J3x.w = Vz. -w

D2. F- (Vx.w(z)) D w(t)
where t is any term globally free for x in w

D3. - (Vx.0w) D (OVx.w)

D4. F (Vx.ow) D (oVx.w)
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In these axioms x is any global individual variable. Axioms D I and D2 are the usual prcdicate
calculus axioms: DI defines 3 as the dual of V and D2 is the instantiation. axiom. Axiom D3 is
known as the Barcan formula connecting the two universal operators V and 0. Axiom D4 is the
Barcan formula for the 0 operator. The axioms state that since both operators have universal
characteristics they commute.

A term t is said to be globally free for z in w if substitution of t for all free occurrences of
x in w: (a) does not create new bound occurrences of (global) variables, and (b) does not create
new occurrences of local variables in the scope of a modal operator. A trivial case: if t is x itself,
then t is free for x. Condition (b) in this definition is essential. For, otherwise, we could derive the
formula

(Vx. O~x < y)) 0 (y < V),

which is not valid for a local variable y.

An additional rule of inference is:

Inference rule:

R4. V Insertion -- VI
- Wt D W2

F W1 W ZA2
F wt Vx.W2

where x is not free in wi.

We have the derived rule

Instantiation 
Rule - INST_ 

W

where t is any term globally free for x in w.

Proot

1. I- W() given
2. I- Vz.w(x) by VI (taking wt to be true)
3. 1- (Vx.w(x)) D w(t) by D2
4. I- w(t) by 2, 3, and MP

The following are the duals or D2 and R4 for the existential quantifier 3:
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T24. F w(t) D 3x.w(x)

where t is any term globally free for x in w.

Proof.
1. - Vz. - w(2-)) D -w(t) by D2

2. I= 3x.w(x)) i -w(t) by DI and. PR
3. F w(t) D 3x.w(x) by PR

Note that we need here again the additional condition (b) that tih substitution of t for x in w
does not create new occurrences or local variables in the scope of a modal operator. For otherwise,
we could deduce from T24

O(y :_ y) : 3u.O(y <u),

which is not valid for a local variable y.

3 Insertion 31

F l0 D W2

F 3x.w, D W2

where x is not free in W2.

proof:

1. F Wl I3 W2 given
2. I-iW 2 D -w1 by PR
3. F -w 2 D VX.-- W1 by VI (R4)
4. - W2 D '-3x.Wl by DI and PR
5. F 3z.w, D W2 by PR

W Rules

Fw D w 2  i WIn 2
(a) (b)

F VX.Wl D VX.W 2  F VX.W 1  -W

proof of (a):

1. F Vx.w I W1  by D2
2. Fw D W2 given
3. F VX.w, D W2 by PR
4. F VX.iW D Vx.W2  by V1

Rule (b) then follows by propositional reasoning.
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33 Rules :
W-,a D W2 F WI W2

(a) (b)
- 3x.w1 D 3X.W2 l- 3 z.wt 3X.W2

proof of (a):

1. W 1n D W2 given
2. I (- w 2 ) 0 (- In) by PR
3. I- (Vz.X.w 2 ) D (VX.--w) by W

4. F (,-3x.w2) (-3z.wtv) by D1 and PR
5. - 3x.w1 D 3x.w2  by PR

Rule (b) then follows by propositional reasoning.

The last two rules are, of course, classical rules of the predicate calculus, and are brought here
only for the sake or completeness and later reference.

We extend now the Equivalence Rule (ER), given above for propositional formulas, to handle
predicate formulas s well.

Equivalence Rule - ER

Let w' be the result of replacing an occurrence of a subformula v,

in w by v 2 . Then

I- V I V2

proof.

The proof is by induction on the structure or w. The cases where w is w1 or of form -u,

U1 V u2, ut : U 2 , Ou, Ou, 0Ou and ulUu2, are treated as before.

Coi : w is of form Vx.u. We 'Aqss'mP that if F vI 1'2, then F v. ,' then by the W-r'ile
F Vz.u = Vx.u', i.e. F w =- w'.

The case where w is of form 3x.u, is proved similarly by the :3-rule. 1

Deduction Rule - DED

F (OWI) D Wn2

where the VI rule (Rule R4). is never applied to a free variable of
w, in the derivation of tot F 2 .
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That is, if under the assumption wl we can derive I- W 2 , where rule R4 is never applied to a free
variable of wl, then there exists a proof establishing I- (Own) Dl W2. We clearly must also be
careful in using any theorem or derived rule such that the V[ rule was used in its proof.

The additional 0 operator in the conclusion is obviously necessary since in general wl I- W2

does not imply F w1 : W 2. For example, obviously w F Ow is true (an immediate application of
Rule R3: F w by assumption and therefore I- 0w by 0 1); but FI w D 0-w is false.

proof.

The proof of the modal Deduction Rule follows the same arguments used ill the proof of the
classical l)eduction Rule of Predicate Calculus. We replace each line I- ui in the proof of w, I- W 2

by the line I- Owl D ui, and show that this transformation preserves soundness. That is

given show

I-ut I- (Owl) Du,
u2 F (Owl) D U2

I- ui F (Owl) D Ui

F - UM F (Ow1 ) J U"
i.e. - W2 i.e. F (Owl) D W 2

where ui is either the assumption wl, an axiom, or derived from previous u,'s by some rule of
inference.

'The proof is by a complete induction on i. We assume that for all k < i, F (Owl) D Uk, and
* prove that F (Owi) D Ui.

Case: ui is an axiom.

1. F Ui axiom
2. - (0wl)Dui by PR

Note that Fi w' implies F w D w' for any w, by propositional reasoning.

Case: ui is wt.

1. F (Olwu)Dw by C3

Case: u, is obtaincd by Rule 1, i.e., ui is an instance of a tautology.

1. - ui by PT
2. F (Owr)Dui by PR

Case: u, is obtained by Rule 112 (using previous F uk and F u ui).

1. F (0Ow1) D uk induction hypothesis
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2. F (0wI) D (uk D U) induction hypothesis

3. D- (0wi) u, by 1,2, and PR

Case: ui is obtained by Rule R3 (using previous F Uk), i.e., ui is Oul'.

1. - (0w)Duk induction hypothesis
2. I- (001 ) D 0uk by 00
3. I- (0w 1) D (0C-w1 I) by T12
4. I- (Owl) O:) uk by 2, 3, and PR

Case: ui is obtained by Rule R4 (using previous I- u D v, i.e. uk, to get F- u D Vz.v, i.e. ui, where
z is not free in u).

By our deduction rule assumption, we know also that x is not free in wl.

1. ~-(Owl) D (u Dv) induction hypothesis
2. I- ((0w )Au) D v by PR
3. F ((0w,)Au) D W.v by R4

(since x is not free in u or wl)
4. - (0w'I) D (uDVx.v) by PR I

A different approach to coping with the application of 0 insertion rule (Rule R3) is to forbid
it altogether. We then get the following restricted deduction rule:

Restricted Deduction Rule - RDED

w 1 F w 2

I- W1 D W2
Provided 0 1 (Rule 1?3) is never applied and VI (Rule R4) is never

applied to a free variable of wl in the derivation of w, I- w 2 .

Here, we are not allowed to use rule 01 or any theorem or derived -uic that E0 I %-.as used in its
proof.

The proor of RDED follows exactly that of DED except tOat the case in which Rule R3 is

applied does not arise.

Predicate Theorems

T25. F (-Vz.w) (3 x. - w)

proof:

1. - (--w) = w by P'T

2. F (Vx. - -w) = Vz.w by W
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3. F- (-3x. -, w) Vx.w by DI and PR
4. F- -Vx., = 3x.- to by PR

T26. F- Vx.(w, A 2 2) (Vx.wi A VX.W2 )

proof:

1. F- Vx.w 1  W w, by D2
2. F- Vx.w 2 D W2 by D2
3. F (Vx.wl A VX.w12 ) i (w, A W2) by 1, 2, and PR
4. F- (Vx.wl A Vz.w 2) = Vx.(wi A W2) by VI

5. F- (wtAw 2) D W, by PT
6. F- Vz.(w! A w 2 ) D Vx.wt by W
7. F (wiAW2) D w2 by PT
8. F- Vx .(wI AW2) D Vz.w 2  by W
9. F- Vx.(w, A W2) D (Vx.w, A Vx.w 2) by 6, 8, and PR

10. F- Vx.(w, A W2 ) = (Vx.wI A VX.w 2) by 4, 9, and PR

T27. F- 3x.(I V W2 ) -- (3x.wi V 3X.W)

proof:

. F- Vx.U(-wi A -102) (Vx. -wt A V.,to 2 ) by T26
2. F VX- -(WI V W2) (VX. -IAVx.- -2 2 ) byER
3. F- -3x.(w, V W2 ) (- 3x.wi A -3X.W2) by D1 and PR
4. F- 3z.(w! V W2 ) - (3x.wl V 3x.w2 ) by PR

T28. F- (Vx.w) -= (OVx.w)

proof.

1. F (Vx.w) D w by D2
2. I- (0Vz.w) D 0 w by 00
3. F (0Vx.w) D (wx.O,,) by VI
4. F- (V. 0w) D (0 V.w) by D3
5. F- (Vx. [w) (0 w.w) by 3, 4, ald PIR

alternative proof of F- (OVx.w) n (Vx. 0lw)

t. F Vz.w assumption
2. F- w by D2 and MP
3. F- 0 t by 01
4. F Vx.O3w by VI

This, Vz.w F Vz. 0 to and by the deduction rule

5. F (oVx.,) : (Vx. o )
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T29. I- (3x'w) ( 3z.w)

proof.

1. I- (Vx.0-..w) ( V.-uw) by T28
2. F- (V. - w) (0-- 3x.w) by Cl, DI, and ER (twice)
3. F (-3x.*w) = (-*3x.w) by C, Dl and PR
4. F ( x. 0 w) = (0 3x.w) by PR

T30. F- (OVx.w) (V.Ow)

proof.

1. F- (Vx.ow) : (oV .w) by D4
2. - Vz.w D w by D2
3. F (0Vx.w) D Ow by 00
4. I- (OVx.w) D (Vx.Ow) by VI
5. F- (VW.Ow) - (OVz.w) by 1,4, and PR

T31. I- (0 3z.w) (3x. 0w)

proof

1. F- (Vx. 0 -w) (O Vx. - w) by T30
2. I- (Vx., Ow) (0-.3x.w) by C4, DI, and ER
3. - (-3x. Ow) (O3xz.w) by C4, D, and PR
4. F (3x.O0w) - (03x.w) by Pt

Theorem 7'28 implies the commutativity of V with 0: Both have a universal character, with one
quantifying over individuals and the other quantifying over states. Similarly, Theorem '29 implies
the commutativity of 3 with 0. The last two theorems (T30 and T31) imply the eonmnutativity
of V and 3 with 0.

5. EQUALITY

Equality is handled by the rnllowin axioms:

Axioms:

El. F- tt for any termt

E2. F- (t, I t2) D [w(t1,t1) = w(t1,t2)i
and t2 is any terT globally free for t, in w.

Axiom El states the reflexivity or equality. Axiom E2 states the substitutivity property of

equality. We us,. w(t, t2) to indicate that t2 replaces some of the occurrences of t, in iv.
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Recall that a term t 2 is said to be globally free for tj in w ir substitution of t2 for all free
occurrences of t1 in w : (a) does not create new bound occurrences of (global) variables, and (b)
does not create new occurrences of local variables in the scope or a modal operator.

Note that the classical axiom for substitutivity or equality E2

(tI = t2) D [W(tl,tl)- W(t,t)l

(where t2 is free for t1 in w) is not correct if w contains modal operators. We could take w(t1 , t2)
to be 0(t, t2) and deduce from E2

(tI = t2) D J0(tJ = ti) = (t, t2)l,

- (tI = t2 ) D 0(t = t ),

which is not a valid statement (since tt - t2 may contain local variables). But we have the following
theorem for arbitrary formulas.

T32. Substitutivity of Equality

- (t = t2) [[tw(t,t,) w(ttt 2)]

where t2 is free for t1 in w.

proof:

By induction on the structure of w.

Case: w contains no modal operators. Then

1. - (t = t2) D [w(t1,,) (t,1 2 )] by E2
2. - 0(t = t2) D (1 = t2 ) by C3
3. - I(t, = t2) D [w(t ,,) - w(t,t 2)] by MP

Case: w is of the form 0 u. Then

. F- 0(t, = t2) D [u(t,, t) u(Lt 2 )] induction hypothesis
2. F- 0(ti = t2) assumption
3. 0- u(1t,) - u(tl, 2 ) by MP
4. F- Ou(t, tL) Ou(t,1 2 ) byr00

Thus, 0(, -- t2) F- Ou(t1,) OU(tl,t 2)

4. F 00(t = t2) D f[u(t,t,) 0u(tI,t 2 )] by DED
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5. 0- D(t, = t2) D JOu(ti,ti) - u(t,t)] by T2 and PR

The cases in which w is of the form 0u, Ou, Vx.u, and 3z.u are treated similarly, using the
0 *-rule, the 0 0-rule, the W-rule, and the 3l-rule, respectively.

Case: w is of the form u 11 v.

1. I- 0(tl = t2 ) n [u(t1, t1) = u(ti, t2)] induction hypothesis
2. I- O(tI = t 2) I v(t1, t 1) = V(tI, t2) induction hypothesis
3. I- ( - t2) assumption
4. F u(t1 ,t1 ) - u(tj,t) by 1, 3, and MP
5. - v(tI,tI) = v(tI,t 2 ) by 2, 3, and MP
6. - [u(t1,tt) UL v(ti,t ) (u(tt,t 2) Uv(tI,t 2 )! by 4, 5, and ER

Thus, O(t I- t2 ) - (u(t1, t) U4 v(t1, t1)) = (u(ti, t2 ) U v(tt, t2 ))

7. - 00(t, = t2 ) D [(u(ti,tj) L v(ti,t,)) (u(tt,t 2)U v(t,,t2))]
by DEDi i ~ ~~~8. F- O(tt =t2) D (u(tjtIt) U,(tItI))=- (u0t02) U ,0,,2))l y E

by T2 and PR I

T33. Commutativity of Equality

, F (tI = t2) D (t2. = t )

proof:

1. F (t -t 2) D [(tI tI) (t 2 - t)j by E2
2. - tj=t- by El
3. I- (t-- t2) D (t2 -t) by 1, 2, and PR

T34. Transitivity of Equality

F [(t1 = t2) A (t2 = t 3)] : (t = t3)

proof:

1. i- (t,=t 2) D [(tI =t3) = (t2 =t 3 )] by E2
2. F- J(tl=t 2 ) A (t2 -t13 )1 D (tI=ta) by PR

T35. Term Equality

(a) I- 0(t, = t2) D (,r(t,)= ,(t2)) for any term r

(b) F (t1 - t2) D (1(th) T(t 2 )) where r does not contain the next operator.
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Here, T(t 2 ) is the result of replacing an occurrence of ti in 'r by t2 .

proof of (a,):

1. - FO(t 1 = t2) D [((r(tl) = T(t2)) (T(t2) =(2) by T32
2. I- T(t 2 ) = 7T(t2) by El
3. F O(tl = t2 ) j(T(tl) = (t 2 )) by 1, 2, and PR

Proof Of (b):

1.- F (tl t2) D [(r(ti) =r(t 2)) (r(t 2) =T(t2))] by E2 (no 0 in T)

2. F 7(t 2 ) = T(t 2 ) by El
3. F (t1  t2 ) (r(tl) = (t2 )) by 1, 2, and PR

B. FRAME AXIOMS AND RULES

The use of' the next operator 0 applied to terms is governed by the axioms:

Axioms:

for any function f and terms tj, t .

N2. F 0Op(tl, . t,,) = p(O ti, .. ,)
for any predicate p and1 terms tl, ,,

N3. F 0(t I= t2 ) =-(0 tI= 0t 2 )

Axiom N3 is a special case of N2 where p is the equality predicate.

These axiGrns arc eo.3ktc.-t wihthe evaluation rulecs that v;, gave -;;hich stated that to
evaluate an expression 0 6(tj, t.. ,), we can evaluate 6(0 ti, 0 t. 0,) regardless of whether 6
is a term or a logical expression.

Recall that we split, the set of our symbols into two subsets: global and local symbols. Thle
logical consequencc of this convention is the following frame axiom:

FA. Frame Axiom
F x = 0Ox for every global variable z

Wc can therefore prove by induct ion on the structure of the term t and the formula wo the
following frame theorems:
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T36. For a term t and formula u;

(a) I- t Ot provided t (foes not contain local symbols

(b) I- w Ow provided w does not contain local symbols

Wc W ,(Oy,, .,OY-) = w(y,1 ....I ,Y")
provided 9, • ,y,, are all the local variables in w.

A derived frame rule that we will be using is

-" Frame Rule - Fit

F- W1 D OW2

F (wA,) O(wAW2 )

provided w does not contain local symbols.

proof:

1. 1- to 0 OW by T36
2. I- W O i (>w2 given
3. I (wAw1 ) D (OwA(w 2) by 1, 2, and P/?
4. F (OwAOw 2) D O(wAw2) by TI0
5. F (wAwl) D O(wAw 2 ) by 3, 4, and P1R

7. DOMAIN PART

The next part or the system contains domain axioms that specify the necessary properties
of the domain of interest. Thus, to reason about programs manipulating natural numbers, we
need the set of Peano Axioms, and to reason about trees we need a set of axioms giving the basic
properties of trees and the basic operations delined on them.

An essential axiom schema for many domains is the induction axiom schema. This (and all
other schemas) should be formulated to admit modal instances as subformulas. Thus the induction
principle for natural numbers can be stated as follows:

Induction Axiom

JR(0) A Vn(R(n) :) R+(n + 1))] D /R(k)
ror alny statement R.

One instance of this principle, which will be used later, is obtained by taking R(n) to be
O(Q(n) D 0 0):
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Induction Theorem

F {o(Q(o) D *,0)
A Vn[O(Q(n) D 0 0) O(Q(n + 1) DO~

D o(Q(k) D * )

Similar induction theorems exist ror other domains and dlepend on well-founded orderings existing
in those domains.

Using this ind~uctionI theorem we can derive the rollowing useful induction rule:

Induction Rule - IND

F- Q(0)iD *

F- Q(n +1) D(0iPV Q(n))

F- Q(k) -

IND is useful for proving convergence of a loop: Shuow that Q(O) guarantees 0 ?k and that for
each n, either Q(?& + 1) implies Q(n) across the loop or it already establishes 0 7P and no further
execution is necessary. Then Q(k) ensures that the loop is executed at most k times and that 0 0
is established on the last iteration or earlier.

proof.

1. F Q(O) D 1 given

2. F 0(Q(0) D 0 0) by 01

3. F Q(n+l1) D (0,0 V * Q(n)) given

4. F 0(Q(n) D *?P) D (*Q(n) D 0 -) by T5, T3 and PRi

5. F- [(0 Q(n) D 0 ~A (0,P V 0 Q(n))J D 0 ip by PT

6. F[Q(n +1) A 0(Q(n) D 0 3~ D by 3, 4, 5and PR

7. F- 0(Q(n) D 0 , (Q(n + 1) D 0 0) by PR

8. F 00(Q(n) D 0 0)D[(Q('n+ 1) D 0 V,) by 00

9. F 0(Q(n) D i O)DE(Q(n+ 1) D 0,0) by T2 and PR

10. F Vn[0(Q(n) D 0 -0 DOE(Q(n + 1) 0 tp) by VI

11. F O(Q(k) D 0 0 by 2, 10, and Induction Theorem

12. F- Q(k) Di by C3and MP I
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8. PROGRIAM PART

Our proof system must be augmented by additional axioms that reflect the structure of the
program under consideration. These additional axioms constrain the state sequences to be exactly
the set of execution sequences or the program under study. This releases us from the need to express
program text syntactically in the system; all necessary information is captured by constraints on
the accessibility relation that are expressed by the additional axioms.

For simplicity, we assume that the program is represented by a directed graph whose nodes
are the program locations or labels and whose edges represent transitions between the labels. A
transition is an instruction of the general form

CW [Y) f. M

Here, c(g) is a condition (possibly the trivial condition true) under which the transition replacing
by f(y) should be taken, where 9 = (yt, ... ,Y,) is the vector or program variables.

We assume that the programs are sequential and deterministic; in other words, all the condi-
tions c1, ... ,ck on transitions departing from any node are exhaustive, i.e., V 1 ci(y) = true,
and mutually exclusive. In order to uniformly satisfy this requirement we add "true -- []" self-
transitions to all the exit nodes.

A first generic axiom states that in every state s, ate is true for exactly one label t. Let 1L
denote the set of all labels in the program; we have

Location Axiom -- LA

F- E atl= 1.

We use here the abbreviation E pi 1 or Pi + + p, = 1 to mean that exactly one of the pi's
is true; pi = 1 if p1 is true and pi = 0 if pi is false.

The role of the other axioms, called the transition axioms, is to introduce our knowledge about
the program into the system. Since the system does not provide direct tools ror speaking about
programs (such as mentioning program text in Iloare's formalism or Dynamic Logic), the transition
axioms represent the program by characterizing the possible state transitions under the execution
of the program. For any transition:

cMp) - := f(,io , ,

we generate a transition axiom l=. This axiom corresponds to a "forward" propagation (symbolic
execution) across the transition a:
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Forward transition axiom

P, F: F- Iat A c(Y) A Y fil D Olate'A Yf(U)1,

where U are auxiliary global variables.

This axiom states: If at any state, execution is at e, c(I)hls and the current values ofr are ~
then at the next state we will be at I' with y

A different approach that suggests an alternative axiom schemna is obtained by "backward"
substitution (derivation of thle weakest precondition)

Backward transition axiom

F- [atf A c(?J) A P(f())l O[att' A P(Y)],

where P is any state predicate (i.e., without modalities).

hlere I-(()) dlenotes thle substitution of f(yi) for all free occurrences of y in P(y). Tfhis form of the
axiom expresses thle effect of thle transition onl an arbitrary "state" predicate P; i.e., a predicate
P that does not contain any modal operators. It says that if at A c(y) andI P(f(y)) hold, then we
aire guaranteed to reach t' with 1(y-) on the next step.

Thle predIicate P may not contain modlalities. As a counterexamiple, considjer thle program
segment tu 1

e I' )true --*[ :=01

with

PW : = 0).

The appropriate instance of the backward axiom for a is

B,.: [att A true A 0(1 = 1)] D O[att' A O(y = 1)],

whichi clearly does iiut curl ctly idleL ,;tu cornpu~atioii of Lou proraili.

Fa andl /1, are equivalent arid can be derived from each other. That is

l'or every transition a:

B,, holds for every 1P if inf(i only if F. holds

proof- 1). for every P) = F..

1. 1- [alt A e(y) A I'(f())1 D Olatt' A P(Yj)J by B., given
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2. F late A c(P) A f( )= f(U D 0(at e A 9=f(U14
taking P(V) to be y -(14,

where U are auxiliary global variables

I.F - tl A c(y) A Y U ] D late A c(Y) A f(Y)= f(U.

by T35(b) and PR

4. - [ate A c(P) A = U1 D Oatt' A Y=f()1
by 2, 3 and PR

which is the desired F. I

proof F. = B,, for every P.

Let P be an arbitrary state predicate and i auxiliary global variables not in P. Then

1. F late A c(Y) A Y=U] D O[ate' A y f(U)j F, ,given

2. - O[ate' A y = f(1)l D [0 ate O(-= f(A))J by T13

3. - O(Y = f(u)) D (OF) =f (0U)) by N3 and NI

4. I- ;=Ou by FA, since Vi is global

5. - f(u)= f(O V) by T35(b)

6. F O(Y =f(1)) D ((0Y) = f( )) by 3, 5, E2, and PI?

7. F (at t A c( ) A Y= U ] [O at ' A (0 )=b(,)d
by 1, 2, 6, and PR

8. F- [- = U A P(f (9))] D P(f(u)) by E2 (no modal operators in P) and P1R

9. - [ate A c(Y) A Y== - A P(f(M))

D [O ate' A (0 Q) = f(U) A P(,(M) by 7, 8, and Pi?

10. 1- ((0 1) = f(1)) D (P(O V) P(f( )) by E2 and PR

11. 5- 0(o7) =P() by T36(c)

12. b [(0 ) f (U) A P(f())l D 0P(F) by 10, 11, and PRn

13. - a A e(Y) A Y=U A P(f(9))] D 10 ate' A 0P(Y)]
by 9, 12, and PR1

14. - [ate A .(Y) A Y = F A P(f(Y))] : [Oate' A 0 P(Y)l
by INST

15. I- ae A c(Y) A P(f(Y))i 0 (Oatt' A OP(Y)l by El and PR

18. f- (ate A c(y) A P(f(Y))] D O[att' A P(Y)) by T13 and PR

which is the desired Ie. U
35



We often use a weaker formn of the transition axioms:

FP: F [att A c(II) A 9 l D Olatt' A V f()j

and

I- ate A c(Y) A P(f(yi))] D 0Z[att' A P(Y)I

obtained fromt I, and B1 a, respectively, by replacing 0 with 0. rhe weaker forms follow by
TI 1, i. e. F- 0w D 0 w.

9. THlE INVARIANCE PRINCIPLE

We now present a general method for provi ng invariance properties of programs, i.e., prop~erties
that hold continuously throughout the execution. Such properties are expressible by formiula.- of
form

F- [atto A 0(y)] D OQ(Yi).

'I'at is, Q(11) is invariantly true for every computation starting at to with input Y satisfying the
precondition O(Y).

Let t be any label in the program tinder consideration and let its outgoing transitions be of
the form

I,.,I

Recall that we assume that cj(F), . ... CkF are exhaustive, i.e. ViA= 1 ci(y) =true, and
mnutually exclusive. We denote by /L the set of all labels in 1'. We have
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Invariance Principle:

Let Q(V) be a state predicate (with no modalities) and labels describ-
ing a property of program P with input condition O(Y).

(a) Q is true initially, i.e.,

V F (atto A OYJj D Q(Y)

(b) Q is maintained along any transition a in P, i.e.,
- late A c.(Y) A Q()] D Q(f.(V)),

then Q is invariantly true, i.e.,
F [att0 A 0(y)] D OQ(Y).

proof.

Consider an arbitrary label t and an arbitrary transition ai, I < i < k, from t to ti.

1. F [att A ci(y) A Q(F)I D late A ci(Y) A Q(f,(g))]

by (b) and PR

2. 1- latt A cify) A Q(fi(y))) D Olatl, A Q(Y)J by B..

3. F [att A ci(y) A Q(Y)] D Olatti A Q(Y)J by 1, 2 and PR

4. - [art A ci(Y) A Q(Y)] D OQ(q) by T13 and 11R

5. F Vi.[att A ei(V) A Q(y) D OQ(Y) by 'R?

(taking the disjunction ovcr all transitions from t)

6. F [att A Vk, 4i(Y) A Q(Y)J D OQ(Y) by P11?

7. F Vk 1 ci(y) = true assumption

8. F fatt A Q(F)] ) OQ(y) by P1R

9. F VICL[att A Q(V) D OQ(F) by PR
(taking tie disjunction over all labels of IP)

10. - [(VIMEL at) A Q(V)l 0Q(Y) by PR

11. F VtEL att = true by Location Axiom and PR

12. - Q(y) OQ(F) by 10, 11 and I'

13. F Q(y) OQ(y) by CI
37



14. F (ato A O(Z)] D Q(tj) by (a)

15. F- [atto A 0(5)] D fIQ(Y) by 13, 14 and PR

10. EXAMl'LE: INT',(Elt iXIONEINTIATON PROGRAM

Consider ror example Lhe rollowing program IE over the integers, which raises a real niumber
x, to an integer z 2 , i.e. X ' , Where X2 > 0. We assume that 00 = 1.

Program IA' (Integer Exponenliation):

a true-- [(yI,yY3) (XI 2 , X 1

Let

qS: atIt A x 2  0

4: att2 A Y3 = 1 '2

W,' would like to .isv' our [,roor qV',t.e, n to ,Ablish thi Iot. he eorrnrt.nvq, of proavrmn I , wt,h ro'spvet
to 0 and 40; we will show

I- 0 : O,.

In the proof we ignore Lype considerations such as rcal(xj) and intcgcr(X.2 ). (See (IIR], (MW]).

PROOF 1: Using Backward Transition Axioms

The backward transition axiom schemata corresponding to this program (taking the weaker
rorm, with 0 rather than 0) are:

1': I- Fatto A I'(ix~z, I)] -D 0[atti A P(i,Y2,Y 3)]
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P: F [atti A 2 =0 A P(yt,y ,, 3)j D c[att2 A P(Y,Y2,Y3)]

B'* F- [at tj A Y 2 >O0A odd(Y2) A P(YI, Y 2 -1, I.Y3)] CftiAP l 2y)D Olattl A P(YI,Y2,Y3)]

B' - [attf A Y2 > 0 A even(y 2) A p(V1/
2 , 12 +2, /3)]

D C[att, A P(y,,y 2 ,y3 )l.

We prove

(a) F- 0 D <> 3k.Q(k,

(b) F- (3k.Q(k,y)) D 0, or equivalently F Q(k,y) D 0.,

where

Q(n,y): at t A (0< Y2 _< n) A Y3"Y I2 =X

Here, 0 < Y2 < n is used to esLablish the termination, and Y3 'y-V Xt2: is the invariant used
to establish the correctness.

Clearly, by rule 0 C, parts (a) and (b) imply the desired result 0- 7 P.

proof of (a):

1. F l1.i '2 XX l2 by doman

2. F- ' D [at to A X2 _0 A l1-212:1 21 by PR

3. F- [at to A X2 _ 0 A 1 . 122 = I Xi21

D Olatti A Y2 2! 0 A y"3 2 =. X1 X.71  by B'Ck
where P is Y2 _ 0 A Y3" y  -  

-
X 2

4. F- (Y2 _> 0) D (0 <- Y2 Y2) by doma,111in

5. F- [att1 A Y2 _0 A Y3 "YV2 = zI21

D [at tr A (0 < V2 Y2) A y3. yjY22 = Xz21 by 4 and I'l?

6. F [atfl A 92 > 0 A y3 " y 2 .:]

D 3k[atti A (0 < Y2 k) A Y3"Y 1vt2X21 by T24

7. F- 0 >3k.Q(k,j) by 2, 3, 6 and <>Q

proof of(b): We use the induction rule IND:

(b1 ) F- Q(O,v) D 0

(b2) l" Q(n 1, 10> 0b V < Q(n, 9)]

F Q(Ic,p 0,
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proof of (b1):

8.- 1(0 < Y2 !5 0) A .3 Y,/ = x,! [/2 =0 A 1/3 I'1
by domfain

9. I- Q(O, 9) D [at t A Y2 = 0 A Y3 = z i
by I'll

10. F [atft A Y2 = 0 A y3 X ,121 0[att2 A Y3 = x122

by I1', where P is Y3 = XIZ2

11. - Q(0, y) 0 V) by 9, 10 and 'R

proof of (b2):

case 1: Y2 = 0.

12. F [ 2 =0 A Y3. Y = 11 [Y2= 0 A Y3- X;X2

by domain

13. F- [Q(n + 1,Y) A Y2 = 01 D latfi A Y2 --- 0 A Y3 = Xb2y
by PiR

14. F [at t, A Y/2 = 0 A y:, = xji '2 D Oat t2 A Y3~ X£12

by 11', where P iS Y/3 =-~x

15. I- [Q(n+ I, ) A Y20] i 0j by 13, 14 and PR?

case 2: Y2 > 0 A odd(y 2 ).

16. [y2 > 0 A (0 < Y2  _ n + ) A y.y, 1 2- Xt1

D(0 :/2- Y < n) A (/ Iy.3) ,, I -' =X bI
by domain

17. F [Q(n+ 1, Y) A Y2 > 0 A odd(y2 )] D [att A Y2 > 0 A odd(y2)
A (0 < Y2 - I <n ) A (Y 1Y3)1 . 1/a-, = X,=21

by PR

18. F [alt A Y2 > 0 A odd(. 2 ) A (0 < Y2-1 I< n) A (Y i'Y3)'. yl/v2-1 = 2]

0 [atti A (0 < Y2 _ n) A 9:l . Y2 = x I,2
by 11, where P is (0 < 2 n) A Y3 " Y11--- Z= 2

19. - [Q(n + 1, V) A Y2 > 0 A odd(y 2 )] D Q(n, )
by 17, 18, and P1R

case 3: Y2 > 0 A even(y2).

20. F [cvcn(y2 ) A (0 Y2 _< n + 1) A yY3 1 =Y£1221
(o < + 2 < n) A ." (y 2 )V-12 = £2.21

by domain
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21. F [Q(n + 1,V) A Y2 > 0 A eten(y2 ) 3 [att, A y2 > 0
A even(Y2 ) A (0 < V2 + 2 < n) A y3. (y,2), + z2Itl

by JR

22. F [at t A Y2 > 0 A e,,en(Y 2 ) A (0 < Y2- 2 < n) A V3"(Y 2 )2. 2  
1z2I

D (at t A (0 < 12 __ n) A Y3 -IW 2 = X, 12

by 1', where P is (0 < Y2 < n) A ( " yY2 = Xz2)

23. - IQ(n+1,Y) A 2 >0 A even(p 2) D cQ(n,y) by21,22, aV)P1

To summarize, we showed

15. F IQ(n+ 1,) AyV=02 0 D >1 case I

19. F [Q(n + 1, Y) A y2 > 0 A odd(Y2)1 D (>Q(n,y) case 2

- 23. F [Q(n + 1,Y) A Y/2 > 0 A even(Y2)I D > (Q(n,y) case 3j

Then since

24. F Q(n+ 1,;) Vy2 = 0 v (V2 > OAodd(2)) V (Y2 > 0Aeven(Y2))
by domain

it follows that

25. F Q(n+,v) 1>7 V <>Q(n,g)l
by 15, 19, 23, 24 and P1?

This concludes the first proof of the total correctness of our example. i

PROOF 2: Using Forward Transition Axioms

For cowparison, let us now prove the total correebLkebs of prgugram E using the forwarud
transition axioms. The proof turns out to be longer than the previous one using the backward
axioms.

The forward transition axiom schemas corresponding to the program (taking again the weaker
form, with 0 rather than 0) are:

F'_: I- atto D 0[att A V-(ziza,1)

F: latti A Y2 = A A i 3 ciats A =

F1 (atti A Y/2 > 0 A Odd(y2) A D 0 )3 )atti A Y = (ui,u, - l,tl .u3)I
I- atti A Y/2 > 0 A evenrit2) A ;9 :) 0 [at tj A If =(U 1

2 U2 --!- 2, U3)]
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Again, let

q5: atto A z2 >0

4,: att 2 A Y3 - x ' .

we would like to establish the total correctness or the program, i.e.,

As before, we prove

(a) F € D 0 3k.Q(k,i)

(b) - (3k.Q(k,y)) D 0,0, or equivalently, F- Q(k,f7) D 0,0,

where

Q(n,Y): ate, A (0 < Y2 : n) A Y3 ',V2 -XIX.

Parts (a) and (b) implies the desired result D- 4' <>4, by rule C. We proceed to prove (a)
and (b).

proof of (a):

. F atto D <>[attt AF 7==(z,,z 2 ,1 by F'

2. I- [ateo A X2  01 D 0[atel A Y=(Xl,X 2 ,1) A x2 _ 01 by FR

3. - z2  0 D [1 .X 2 = X,2 A (0< X2 < X2 )j by domain

4. F =(XI,X2, 1) A Il ZZ = x1" A (0 < 2 < z2 )1

D [Y3 Yi' = ZZ2 A (0 < Y2 _ Y2)1 by E2 and PR

5. - latti A Y=(xi,x 2 ,I) A X2  0)
D [att, A Y 3 'YV2 =X,12 A (0< V2 !5 Y2)] by3, 4, and PR

6. F [at(, A 3 .yU2 = Xz 2 A (0 < V2 < Y2)]

D 3k[atti A Y3 - YV2 =X1,2 A (0 <2 k)0 by T24

7. F [atto A x2  0 D 03k[ate, A Y3 YIV 2 = z, 2 A (0< Y2 _ k)]
by 2, 5, 6, 0 Q and PR

ioeo,

7'. F <>3k.Q(I,p).

proof of (b): We use the induction rule IND:
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(b) ~F Q(0,V) D 0>,

(b2) F Q(n+IV) 1, 0 v <Q(n, )l

F- Q(k,) <p

In our proof we use the special consequence rule

Consequence 3 0 rule - 3 0 Q

F- W2 J'0'2 3
F" w 3 39w 4

I- wl :3 w4

where u is not free in W4.

proof of rule:

(1) F- w, D 3u.w2  given
(2) F- W2 D O 3  given
(3) F- 3u.w 2 D 3u. W3  by -3
(4) F 3u.w 2 D C 3u.w3  by T29 and I'
(5) F- W3 D w4 given

(6) F- 3u.w3 D W4 by 3, since u not I'ree in w4
(7) F- W1 Di W4 by (1), (4), (6), and 0Q

proof of (bl):

8. F- (0< Y2 !5 0) D (v=0) by domain

9. F- Q(0,y) D [at 6 A Y= A Y2 0 A Y3 Y l12 Z 2-
by ElI and IP

10. F Q(0, V) D 3.[at ti A y 9 A U12 = 0 A U3 . I 2 13

by T24 and 111t

11. F- [ate, A a2z = 0 A = O j c'Iatt 2 A U1 by F', E2, and PI?

12.. F- [atti A V1 = U A U2 = 0 A u3 U1' = zt,'
: :0[att2 A F=Y A u2 =0 A U3.1u1i"-=2T '21  by FR

13. F- {u2 =-0 A u 3 'u1 ' 2 =' x , 2 3 = X-' by domain

14. F- [aft 2 A U2 =0 A U13 .Ut*' - z 1 12 1 [att 2 A U-3 'Z2' by P R

15. F- [art2 A V=It- A U2=0 A U 3"Ut z1 tj

:3 [ate 2 A Y - zt"I by E2 and I?
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16. F- Q(O,y) i *0 by 10, 12, 15 and 3'0Q

proof of (b2 ): We have to consider three cases: Y2 - 0, Y2 > 0 A odd(y2 ), and Y2 > 0 A even(y 2 ).
Let us only prove the last case.

Case 3: V-2 > 0 A even(y2 ).

17. - (Q(n+ l,Y) A Y2 > 0 A evCn(y 2 )] D [at4t A yY
A Y2 > 0 A even(Y2) A (0 < Y2 _ n + 1) A Y3" Y - X 2I

by El and PR

18. F [Q(?' + 1), F) A Y/2 > 0 A even(/ 2)j 39 [A~aft t A F1
A U2 > 0 A even(u2 ) A (0 < U2 n +1) A u3 uIU2 = Xz21

by T24 and PR?

19. F- (att A V = U A U2 > 0 A even(u2)
<>att, A / =--- (u1 2, u2 -2, u3fl by F', E2, and P1?

20. F- late, A y= A u2 > 0 A even(u 2 )
A (0 < u 2  n+1) A U3 "UU2 =XIX2

1

D KO[atti A y (U,2 , U2 * 2, U3 ) A even(u2 )
A(0 < u 2  n+ 1) A U3 -UI'2 = 

= z 1

by F?

21. F [even(U2 ) A (0 -< U2 n + 1) A U3 .UIU2 = ZI 21

D [(0 < u 2 -- 2 < n) A u 3 . (u 1
2

)u2
- - 2 = xlz,2l by domain

22. F- [altl A y= (u, 2 , u 2 -2, u3) A even(u2 ) A (0 <u 2  n 1)
A u3 " UIU2 = Xl =

;
] D [atll A (0 _ Y2 !5 n) A Y3" Y I

/Y2 = XX2

by E2 an(d PR

23. F- [Q(n+ 1,p) A Y2> 0 A even(y 2 )} >Q(n, y)
by 18, 20, 22, and 3I<>Q

To summarize, we can show

[Q(n+ 1,Y) A /2=01 : <¢ case I

F- [Q(n + 1,Y) A Y2 > 0 A odd(y 2)] D 0((n, 1 case 2

F- [Q(n +laj) A Y2 > 0 A evet(y2)i D 0 Q(n, V) cas 3

Then since

F- Q(n + t, F) D [Y2 = 0 V (Y2 > 0 A odd(y 2 )) A (Y2 > 0 A even(y))I by domain

it follows that

F- Q(n+l,y) D [0 0 V 0Q(n,y)] by P1R

This concludes the alternative proof of the total correctness of our example.
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